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This article describes initial results obtained from an investigation of using pat-

tern recognition techniques for identifying fault modes in the Deep Space Network

(DSN) 70-m antenna control assembly. It describes the overall background to the
problem, outlining the motivation and potential benefits of this approach. In par-

ticular, it describes an experiment in which fault modes were introduced into a

state-space simulation of the antenna control loops. By training a multilayer feed-

forward neural network on the simulated sensor output, classification rates of over

95 percent were achieved with a false alarm rate of zero on unseen test data. It

concludes that although the neural classifier has certMn practical limitations at

present, it also has considerable potential for problems of this nature.

I. Background and Motivation

Very accurate and precise pointing is a characteristic

of the Deep Space Network (DSN) antennas. Some recent

pointing problems have led to an interest in investigating
automated methods of fault detection and identification

within the antenna control assembly (ACA). The ACA for

the 70-m antenna is a two-axis (azimuth and elevation)

digital control system. In its simplest configuration, each
axis controller consists of several servo-valve-controlled hy-

draulic motors, couutertorque motors, gears, analog elec-

tronics (power amplifiers, analog compensation, filters),
tachometers, an encoder, a digital computer, and various

digital interfaces. It gets more complicated if the antenna
is operated in precision mode, in which the 70-m antenna

position is slaved to that of a precision pointing mecha-
nism called the master equatorial. Clearly, there are many

hydraulic, electrical, mechanical, hydromechanical, and

electromechanical components that may be subject to

wear, degradation, and aging. Identifying the source

of pointing degradation within the ACA is not a trivial

problem.

Purthermore, although excellent performance of the

ACA is critical for good antenna pointing, it is only a

part of the complex interaction of people, procedures, and
equipment that affects pointing. To track down a pointing

problem through all this can sometimes be a very diffi-

cult task. As a result, component degradation often goes

unnoticed, resulting in suboptimal system performance.
No fault identification action is taken until the X-band

pointing requirements are no longer met or catastrophic
failure occurs. It was recently reported that the antenna

subsystem functional requirements for test or diagnostic

capabilities have not been fully met [1].
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According to the Deep Space Network System Func-
tional Requirements, network equipment shall be designed

to have a service life of at least 10 years3 However, the

Deep Space Network Long Range Plan indicates that ex-

isting antennas will be operating well into the 21st cen-

tury with greater availability (99 percent), lower crew sizes
(35 percent of 1992 levels), and at much higher frequen-

cies (Ka-band). 2 The implications of these goals are that

(1) the equipment related to antenna pointing must always

operate at near optimal performance levels, (2) scheduled

maintenance times must be reduced, (3) equipment fail-

ures must be eliminated, and (4) these must be accom-

plished with a reduction in the personnel available for

monitoring, diagnostics, repair, and maintenance. Rec-

ognizing this, it was identified in the Deep Space Network

Long Range Plan that over the next 20-30 years the DSN

must develop computer-aided maintenance and expert sys-

tems capability.

The objective of maintenance is to keep equipment

operating in a nominal condition. Historically, mainte-
nance has meant the periodic inspection, replacement, and

rebuilding of equipment that is critical to system perfor-

mance. However, this strategy is expensive because it

results in downtime to replace equipment that may be op-

erating nominally, and it still does not guarantee against

catastrophic failure. A more effective strategy is to sched-

ule repairs based on the operating condition of the system.

An automatic monitoring system that can detect devia-

tions from the nominal system state and identify the source
of the deviation is a more desirable method of schedul-

ing maintenance, maintaining optimal performance, and

avoiding catastrophic failure.

As indicated above, a suitable system for an investiga-
tion of automated fault detection and identification is the

ACA of the 70-m antenna mechanical subsystem (ANT).

More fully automated fault detection and identification
clearly would assist current DSN operations and is abso-

lutely necessary for future operations.

II. ACA System Model and Fault Simulation

For this investigation, the 70-m antenna azimuth drive

was simulated operating in nominal condition and four

I Deep Space Network System Functional Requirements General Re-

quirements and Policies Through 1988, JPL Document 820-20,

vol. 1, Rev. A (internal document), Jet Propulsion Laboratory,
Pasadena, California, March 1, 1988.

Deep Space Network Long Range Plan, JPL Document 801-1 (in-

ternal document), Jet Propulsion Laboratory, Pasadena, Califor-
nia, March 15, 1989.

fault conditions. These simulations were repeated at three

different angular velocities: 0.0, 4.0, and 40.0 mdeg/sec.

The rates were chosen to emulate the range of rates en-
countered in the azimuth drive during a spacecraft track.

At low elevation angles, the azimuth rate is very small.

As elevation angle increases, azimuth rate also increases.
The azimuth drive of the 70-m antenna was simulated on

MatrixX simulation software. MatrixX is a commercial

engineering analysis and control design software package.
It incorporates most of the matrix analysis functions in

EISPACK and LINPACK. It also has a graphical environ-
ment for simulation of discrete and continuous models.

The model described in this article is similar to that

reported in [2] and is very briefly described here. For de-

tailed information, readers are referred to the original pa-

per. A block diagram of the model is shown in Fig. 1.

The model was a hybrid continuous and discrete time

model. The antenna servo controller (ASC) in this sim-
ulation consisted of a discrete-time-state feedback control

algorithm and a steady-state Kalman filter. Its inputs were

the commanded position and position feedback (measured

and quantized by a 20-bit encoder). The ASC outputs

were the position estimate, rate command, and quantized

rate command, a 12-bit digital-to-analog (D/A) conver-
sion labelled DAC Out. The rate loop amplifier repre-

sented all the analog electronics, with inputs of rate com-

mand and tachometer voltage feedback, and valve current
as output. The tachometer voltage feedback represented

four tachometers, one for each drive motor. The valve

converted an electrical signal to hydraulic flow. Its in-

puts and outputs were valve (coil) current and valve (hy-

draulic) flow, respectively. The motor model represented
four hydraulic motors. The inputs were valve flow and

load torque. The outputs were motor rate, tachometer

rate, and differential hydraulic pressure. The structure

model was a seventh-order model incorporating the dom-
inant modes of the structure and gearboxes. Its inputs

were motor rate and wind disturbance torque. Its outputs

were structure position referenced at the encoder and load

torque on the axis.

The model incorporates the nonlinearities of static and
coulomb friction in the motors, deadband and hysteresis in

the valve, position quantization (encoder), and control ef-

fort quantization (D/A conversion). At low antenna angu-
lar velocities, these nonlinearities are significant and make

system analysis very difficult. Since the nonlinearities are
discontinuous, it is not possible to get a linear approxima-

tion that is valid at low angular velocities. Unfortunately,

almost all operation of DSN antennas is at angular veloc-

ities from 0.0 to 5.0 mdeg/sec.
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The faults simulated for this investigation were faults

that have actually occurred at one or more of the 70-m

antennas. When these faults have occured at the antenna,

they have been severe enough to affect antenna pointing,
yet subtle enough to be very difficult to diagnose. Part

of the difficulty is due to the effect of nonlinearities at

operational velocities. Signals obtained at the antenna

have such a complex structure in the time domain that it is

often very difficult for operations personnel or an engineer
to diagnose the fault.

The faults chosen for this investigation, how they were

simulated, and their relationships to the actual antenna
are described below:

(1) Tachometer failure: This corresponds to a break in a

tachometer winding or another electrical connection.
There are tachometers associated with each drive

motor. Voltage ripple, inherent in any tachometer
and/or caused by torque ripple of the motor, is re-

duced and some failure robustness is achieved by av-

eraging the tachometers. The loss of one tachome-

ter reduces the gain and bandwidth of the rate loop.

As a result, the servo will not follow a command

as quickly, and disturbances will not be rejected as

well. This was simulated by reducing the tachometer

voltage by one-fourth.

(2) Increased valve deadband: This corresponds to wear
of the surfaces in the hydraulic valve. Very pre-

cise machining is required to manufacture a low-

deadband valve. Flow of the hydraulic fluid wears

these surfaces, especially if the fluid is carrying par-

ticulates. Greater deadband increases the limit cycle

behavior of the servo. A limit cycle may be unavoid-

able even in the nominal case, but it reduces pointing
performance and increases drive mechanical wear.

This was simulated by increasing the deadband in

the valve by a factor of 2.

(3) Increased static friction: The significant sources of
static friction in the ACA are the valve, the motor,

and the gear reducers. It is also caused by wear. The
result of increased friction is increased limit cycling.

For this investigation, static friction was simulated

in the motor. The fault condition corresponded to
increasing the static friction by a factor of 2.

(4) Tachometer noise: Tachometer noise corresponds

to brush wear and/or bearing wear. It was simu-
lated as additive Gaussian noise with zero mean and

standard deviation that increased with velocity.

III. Classification Experiment

As described above, the data for the classification ex-

periment were generated by introducing fault modes into

the control-loop simulation model. In addition, data were

obtained for normal operation in the absence of any of the
four fault modes. Hence, there are in effect five classes.

For each class, the system was simulated at three angular

velocities, namely, 0, 4, and 40 mdeg/sec over a time span
of 20 seconds for each rate, with a sampling resolution of

200 Hz. This yielded 4000 × 3 x 5 = 60, 000 data vectors

in total. Each data vector has eight components, corre-
sponding to eight system outputs or observable sensors in

the simulator. These outputs are antenna rate, differen-

tial pressure, valve flow, encoder, rate command, position

estimate, valve current, and tachometer voltage. Figure 2

shows a plot of these outputs over 20 seconds at a rate of

4 mdeg/sec under normal operation (no faults). As men-

tioned above, this corresponds to 4000 data points for each

component of the output vector (for a particular class at a

given rate). Figures 3, 4, 5, and 6 show output plots at the

same rate for the four different faults, namely, tachome-

ter failure, increased deadband, increased static friction,

and tachometer noise, in that order. Clearly, the problem

of discriminating the individual fault conditions from nor-

mal behavior is nontrivial, based on visual inspection of

the waveforms. The problem is as follows: given part of
the data, say the first 2000 points, derive a classification

algorithm that can classify as accurately as possible the
remainder of the data.

IV. Feature Generation

Although in principle it would be possible to use the

60,000 input vectors directly as input to a classifier, it is

generally considered in the statistical pattern-recognition
literature to be a better idea to generate "features" by pre-

processing the data. Essentially, the aim is to transform

the data into a feature domain, where the features possess

greater discriminatory power than the values of the raw
data do. Heuristic motivation for this technique comes

from the observation that biological systems such as the

human visual system use this approach. In addition, there

are rigorous statistical arguments that show it is important

to make as efficient use of the available data as possible,
and transformation to a good feature domain promotes

such efficiency. As an example, it might be desirable to

transform the data to the frequency domain for a more
efficient representation.

Although automated feature discovery systems exist

(based on expansions such as the Karhunen-Loeve trans-

form), by and large the technique that works best in prac-
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tice is manual feature generation. In effect, by defining

features thought to possess useful discriminatory power,

the classifier is helped up the learning curve; in a statisti-

cal sense, this is equivalent to a prior bias on the hypothesis

space.

For this particular problem, the initial study chose to
define simple time-domain features such as the mean and

the range. The motivation for this choice was to inves-

tigate how well one could classify the data by only using
these very simple statistical indicators; as shall be seen,

one can do surprisingly well. An arbitrary choice was made
of a window size of 128 over which these features were es-

timated, which resulted in a reduction of the number of

input data vectors from 60,000 to 465. Another advan-

tage of the simple estimators over more sophisticated tech-

niques was their robustness over small sample sizes; i.e.,
the variance of these estimators could be expected to be

lower than Fourier-based estimators for the same amount

of data. In turn, more robust estimators would lead to

better generalization performance on unseen data.

For each of the differential pressure, valve current, and

tachometer voltage outputs, the range, mean, and variance

in each window were estimated, giving nine features. The

slope of the encoder and position estimate and the mean of
the rate command were also estimated, giving a total of 12

features in all. The data from the antenna rate and valve

flow outputs were not used in this experiment, as they

are not directly measurable in the actual physical control

assembly in the stations.

It is instructive to view the discriminatory power of

some of these features. In Fig. 7(a), the normalized values

of the tachometer-voltage-mean feature as a function of
the class values are plotted. The class numbers correspond
to the four fault conditions described earlier, with class 5

being the absence of any fault, or normal conditions. It
can be seen that this feature contains some discriminatory

power for classes 1 and 3, but otherwise not much class
information can be distinguished. Figure 7(b) shows a

similar plot of the valve-current variance where class 4

(increased tachometer noise) is the only distinguishable
class; naturally, the variance-based features possess the
capability of discriminating such a class. In general, most
of the other features possess even less discriminatory power

on their own. Hence, whatever discriminatory power these

features possess as a group will only be discovered by a

classifier that can effectively combine these features into

composite functions; i.e., it would be expected that, say, a

simple linear discriminant classifier would not do very well

on this problem.

V. Choosing a Classifier

In pattern recognition, there is a wide variety of differ-

ent algorithms available for generating classification mod-
els from data. Among the most widely used methods are

nearest-neighbor classifiers, Bayesian models, and, more

recently, multilayer feed-forward perceptrons (neural net-

works). What is perhaps not so well known is that many of
these schemes perform equally well across a broad range of

problems if evaluated in terms of classification-error per-
formance alone. In other words, the difference between
these various schemes in terms of classification accuracy

has been empirically shown to be often minimal [3,4].

What often matters then in choosing a classifier tech-

nique are other considerations, such as the efficiency of

the learning algorithm, ease of implementation, amount of

prior knowledge required, etc. For example, the nearest-

neighbor classifier is easy to use, but can be very ineffi-
cient in terms of memory requirements to implement. The

Bayesian approach, for problems involving nondiscrete or

continuous-valued data in particular, often requires sig-

nificant prior knowledge regarding the distribution of the

data; for the antenna problem, since the plant under ob-

servation is essentially nonlinear, little can be said a priori

regarding the distribution of parameters such as the range
and variance of the outputs.

Hence, for the initial study at least, a neural network
classifier was chosen. The classification of relatively "low-

level" time varying waveforms, where there was little prior

knowledge about the underlying form of the probability

density functions, was considered a suitable problem for
the neural approach [5]. Problems that appear to be sim-

ilar in nature to human perceptual tasks intuitively seem

to be typically well matched to connectionist models. In

addition, a public-domain algorithm coded in C for exactly
this purpose was available (and will be described in more

detail in the next section), making it very easy to experi-
ment with the neural approach; i.e., no coding effort was

required. It is also worth noting at this point that in this

small-scale initial study, the primary interest was in get-

ting an idea of the scale of the problem; e.g., is it possible

to classify these waveforms using very simple features?

VI. Conjugate-Gradient Neural Learning
Algorithms

The well-known backpropagation algorithm [6] for train-

ing multilayer feed-forward neural networks is somewhat
wasteful of computational resources, and it is relatively

well known that practitioners resort to various unpub-

lished "tricks" to speed up the algorithm in practice.

Hence, until recently, although impressive results had been

reported in the literature from using this algorithm, it was
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not practical to experiment with it without a significant
investment in initial effort. However, recent results have

taken a broader view of the algorithm, and by utilizing

prior work in conventional optimization theory and prac-
tice, more standard and conventional approaches to back-

propagation have developed. In particular, the algorithm

used in this experiment is described by Barnard and Cole

[7], which in turn is an application of a conjugate-gradient
optimization algorithm of Powell [8]. The algorithm will
not be described in detail here except to note a few practi-

cal points; the interested reader is referred to the original
papers. As described by Barnard and Cole, the conjugate-

gradient algorithm is usually able to locate the minimum of

a multivariate function much faster than a pure gradient-

descent technique. In practice, it was found that the al-

gorithm performs consistently well on a variety of classi-

fication problems. Of course, with these techniques there

is no guarantee of convergence to the global optimum, but
again, in practice the algorithm has consistently generated

near-optimal solutions.

A factor that is often glossed over in the literature is
the choice of neural architecture. This prior choice of a

network model is suboptimal in general, and one would

prefer to have the algorithm automatically select the ap-
propriate size architecture from the data. A number of

research groups are pursuing this goal, but as yet there are

no widely accepted robust algorithms available. Hence, in

practice, one must choose a network architecture for the

problem at hand, i.e., the number of "hidden" layers and
number of "hidden units" at each layer. For this exper-

iment, attention is restricted to three-layer models (i.e.,

one hidden layer). The Appendix describes in more detail
the exact nature of the three-layer networks under con-

sideration. Note that there are many other variations of

neural network architectures, such as recurrent networks

and Boltzmann machines. The three-layer network is the

simplest of these models with universal approximation ca-

pabilities; i.e., in principle, it can approximate any func-

tion, given enough hidden units.

VII. Results of the Classification

Experiment

As described earlier, the original simulator output data

were preprocessed into 465 feature vectors, with 12 fea-

ture components in each vector. This gave 93 data vectors

per class. On closer inspection of the data, it was decided

that the transient portions of the waveforms could safely

be eliminated from consideration. In practice, one would
in effect implement a hierarchical classifier, where the data

were initially classified as either transient or nontransient.

In addition, it was decided that the low-rate case of

rate = 0 was a special case, and since large portions of
the waveform at this rate contained no information at all,

including them in the experiment would not yield mean-
ingful results. Hence, only the nontransient, nonzero-rate
data were looked at. This resulted in further data reduc-

tion to 260 data vectors.

The experiment consisted of generating two disjoint

(roughly equally sized) subsets of the original data, calling

one the training set, the other the test set. The conjugate-

gradient algorithm was run on the training set, and the

resulting three-layer network was used to classify the data
in the "unseen" test set. After eight runs of this nature

on randomly chosen training and testing disjoint subsets

of roughly equal size, the resulting mean classification ac-

curacy was 95.1 percent with almost no variance. Figure 8
shows a so-called "confusion matrix" for one of the net-

works. The left-hand column denotes the true value of the

class; the top row denotes the network's estimate. Hence,

a perfect network would have all of its entries in the diag-
onal; an entry in location i,j indicates the number of test

points of class i that were classified as j. Remembering
that class 5 is normal behavior, it can be seen that the

false alarm rate is zero; i.e., no normal windows are incor-

rectly classified as a fault condition. In addition, it can
be seen that the network has trouble classifying only one

class, namely, tachometer failure. The network tends to

confuse it with either increased static friction (class 3) or

normal mode (class 5). Apart from this class, it performs

perfectly.

The results of this simple classification experiment are

surprisingly good in the context of pattern recognition.

In general, for a given set of features and a class variable,

there is a theoretical upper bound (the Bayes optimal rate)
on the classification accuracy that is attainable. For exam-

ple, if the features are completely independent of the class

variable, then the optimal strategy is always to choose the

most likely class and, hence, the optimal rate is the prior

probability of this class. Since in practice the upper bound

on performance is often considerably less than 100 percent,

a figure of 95 percent is quite respectable for an initial ex-

periment.

VIII. Conclusions

The result of the neural network classification exper-

iment is promising. Even though the faults were only

single-mode failures of a simple nature, and only on a sim-

ulator, one has reason to believe that the real problem

may be amenable to these techniques when one takes into
account that the classifier as implemented did not use any

of a wide variety of additional information that was avail-

able. For example, by treating the data vectors (windows)
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as random samples, all sequential information in the wave-

form was ignored; i.e., in practice one would use memory

in the classifier to weight the current classification decision

based on previous decisions (effectively using a "smooth-

ness" assumption on the occurrence of faults over time).

Of course, the neural network approach has inherent

drawbacks also. It may be difficult to ascertain which fea-

tures, or combinations of features, are contributing most
to the classification accuracy, although for three-layer net-
works there exist visual analysis techniques for this pur-

pose. In addition, training the network on a Sun-3/260

typically consumed about 1.5 hours of computation (with

no other processes running except for Unix overhead),

while the training data correspond to only 10 seconds of

actual elapsed (simulated) time. tIence, it is difficult to

see the implementation of actual, practical neural network

algorithms, which learn in real time in the field, until very

large scale integrated (VLSI) neural hardware becomes
available.

IX. Future Work

In general, the problem of real-time predictive and diag-
nostic monitoring of the antenna control assembly is quite

a challenging one. It would be naive to expect that a sim-

ple "static" classifier, such as that presented in this paper,
would be robust enough to work in the field. In particular,

the assumption that there are clearly defined fault classes

will probably not hold up in practice, so that approaches

such as unsupervised classification techniques (in which

the training data have no class labels) will need to be con-

sidered. In addition, there are a number of problems, both
at the theoretical and implementation levels, with develop-

ing an autonomous monitoring system. These include, for

example, issues of memory (when should the system dis-

card old data?), validation (how can one verify or quantify

the operation of such a system in a nonintrusive manner?),

etc. Once these algorithmic issues are dealt with, it may be

possible to develop dedicated VLSI hardware specifically
for antenna-control-assembly monitoring.

It is proposed that these problems be addressed by us-

ing a phased approach, applying existing technologies to

prototype systems in-lab, and experimenting with DSS 13
facilities. In this manner, the feasibility of these techniques

can be proven without incurring significant risk, and the

prototype can be gradually transferred to the DSN opera-
tions environment in a relatively low-cost manner.
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Fig. 8. Contusion matrix with 6 errors resulting from
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test data of size 126 (percentage error = 4.8).
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Appendix

Three-Layer Networks

Figure A-1 shows an example of a network. The input
nodes are labeled hi, the hidden nodes are labelled hi,

and the output layers are labelled oi. In general, there are
K + 1 input units, where K is the number of features (12

in this case). The extra node is always in the "on" state,

providing a threshold capability. Similarly, there are m

output nodes, where m = 5 is the number of classes.

The number of hidden units was chosen arbitrarily in

these experiments, but an empirically found rule of thumb
to have between 1.5 and 2 times the number of input units

typically worked well. The size of this hidden layer can
influence the classifier performance critically: too many

hidden units, and the network overfits the data (i.e., the
estimation error will be large), whereas too few hidden

units leaves the network with insufficient representational

power (i.e., the approximation error term is large). With

the weight from input unit nl to hidden unit hj as wij,
each hidden unit calculates a weighted sum and passes the

result through a nonlinear sigmoid function F0, i.e.,

\ _=i

where a(ni) is the activation of input unit/--typically, the
actual value of feature i normalized to the range +1,-1.

The function F(x) is defined as

1

F(x) - 1 + e -=

Output unit k, 1 < k < 5 calculates a similar weighted

sum using the weights wjk between the jth hidden unit

and the kth output unit, i.e.,

o(o,)
J

A classification decision is made by choosing the output

unit with the largest activation for a given set of inputs

(feature values); i.e., choose class k such that

k = arg

Hence, the optimization problem is to find the best set of

weights such that the mean-square prediction error on the

training data is as small as possible. Note that strictly

speaking, from a statistical point of view, this is not the
appropriate criterion, as the error on the training data

may be an overly optimistic estimator of the true error
of the classifier on unseen samples. Nonetheless, provided

the number of free parameters in the network is at least

an order of magnitude less than the number of training

data points available, this minimization of training error
is a reasonably robust procedure in practice.
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